Search results for "Coherence length"

showing 10 items of 30 documents

Gauge theory of the long-range proximity effect and spontaneous currents in superconducting heterostructures with strong ferromagnets

2017

We present the generalized quasiclassical theory of the long-range superconducting proximity effect in heterostructures with strong ferromagnets, where the exchange splitting is of the order of Fermi energy. In the ferromagnet the propagation of equal-spin Cooper pairs residing on the spin-split Fermi surfaces is shown to be governed by the spin-dependent Abelian gauge field which results either from the spin-orbital coupling or from the magnetic texture. This additional gauge field enters into the quasiclassical equations in superposition with the usual electromagnetic vector potential and results in the generation of spontaneous superconducting currents and phase shifts in various geometr…

02 engineering and technology01 natural sciencesSuperposition principleCondensed Matter::Superconductivity0103 physical sciencesProximity effect (superconductivity)Boundary value problemGauge theory010306 general physicsPhysicsSuperconductivityta114Condensed matter physicsJosephson effectMeissner effectFermi energy021001 nanoscience & nanotechnologyferromagnetismcoherence lengthQuantum electrodynamicsproximity effectCondensed Matter::Strongly Correlated ElectronsCooper pair0210 nano-technologyVector potentialPhysical Review B
researchProduct

Spatial information transmission using orthogonal mutual coherence coding.

2005

We use the coherence of a light beam to encode spatial information. We apply this principle to obtain spatial superresolution in a limited aperture system. The method is based on shaping the mutual intensity function of the illumination beam in a set of orthogonal distributions, each one carrying the information for a different frequency bandpass or spatial region of the input object. The coherence coding is analogous to time multiplexing but with multiplexing time slots that are given by the coherence time of the illumination beam. Most images are static during times much longer than this coherence time, and thus the increase of resolution in our system is obtained without any noticeable c…

Coherence timeMutual coherenceOpticsCoherence theoryComputer sciencebusiness.industryDegree of coherenceSpatial frequencybusinessMultiplexingAtomic and Molecular Physics and OpticsCoherence lengthCoherence (physics)Optics letters
researchProduct

Observation of classical optical wave condensation

2010

We demonstrate the nonlinear condensation of classical optical waves. The condensation is observed directly, as a function of nonlinearity and wave kinetic energy, in a self-defocusing photorefractive crystal.

Condensed Matter::Quantum GasesPhysicsCondensed Matter::OtherPhysics::OpticsNonlinear opticsKinetic energyPhysical opticsMolecular physicsCoherence lengthFour-wave mixingCross-polarized wave generationQuantum mechanicsNonlinear Sciences::Pattern Formation and SolitonsRefractive indexCoherence (physics)Frontiers in Optics 2010/Laser Science XXVI
researchProduct

The electron gas with short coherence length pairs: how to approach the stronger coupling limit?

2001

Abstract The attractive Hubbard model is investigated in 2D using a T -matrix approach. In a self-consistent calculation pairs as infinite lifetime Bosons only exist in the atomic limit and therefore a Fermi surface can be investigated also in the stronger coupling regime. A heavy quasiparticle peak with a weak dispersion crosses the Fermi surface at k F whereas light, single particle excitations do only exist far away from the Fermi surface. At low temperatures there seem to exist different self-consistent solutions. In one of them a pseudogap opens even in the integrated density of states. In the present work accurate k -dependent and k -integrated spectral quantities for a 2D finite latt…

Condensed Matter::Quantum GasesPhysicsHubbard modelCondensed matter physicsEnergy Engineering and Power TechnologyFermi surfaceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCoherence lengthQuasiparticleDensity of statesCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic EngineeringFermi gasPseudogapBosonPhysica C: Superconductivity
researchProduct

Monte Carlo study of cluster-diameter distribution: An observable to estimate correlation lengths

1997

We report numerical simulations of two-dimensional $q$-state Potts models with emphasis on a new quantity for the computation of spatial correlation lengths. This quantity is the cluster-diameter distribution function $G_{diam}(x)$, which measures the distribution of the diameter of stochastically defined cluster. Theoretically it is predicted to fall off exponentially for large diameter $x$, $G_{diam} \propto \exp(-x/\xi)$, where $\xi$ is the correlation length as usually defined through the large-distance behavior of two-point correlation functions. The results of our extensive Monte Carlo study in the disordered phase of the models with $q=10$, 15, and $20$ on large square lattices of si…

Condensed matter physicsHigh Energy Physics - Lattice (hep-lat)Monte Carlo methodFOS: Physical sciencesObservableSquare (algebra)Coherence lengthHigh Energy Physics - LatticeDistribution (mathematics)Distribution functionTransition pointLattice gauge theoryAtomic physicsMathematicsPhysical Review E
researchProduct

Perpendicular transport properties of YBa_2Cu_3O_{7-\delta}/PrBa_2Cu_3O_{7-\delta} superlattices

2000

The coupling between the superconducting planes of YBa2Cu3O{7-\delta}/ PrBa2Cu3O{7-\delta} superlattices has been measured by c-axis transport. We show that only by changing the thickness of the superconducting YBa2Cu3O{7-\delta} layers, it is possible to switch between quasi-particle and Josephson tunneling. From our data we deduce a low temperature c-axis coherence length of 0.27 nm.

DeltaSuperconductivityPhysicsCondensed Matter - Materials ScienceCondensed matter physicsSuperlatticeCondensed Matter - SuperconductivityCondensed Matter PhysicsCoupling (probability)Electronic Optical and Magnetic MaterialsCoherence lengthCondensed Matter::SuperconductivityPerpendicularElectrical and Electronic EngineeringQuantum tunnelling
researchProduct

Microwave surface impedance of proximity-coupled superconducting (Nb)/spin-glass (CuMn) bilayers

1998

The surface impedance of Nb/CuMn (superconducting/spin-glass) bilayers has been measured at 10 GHz with the parallel plate resonator technique to obtain information about the exotic behavior of the order parameter in superconducting/magnetic proximity systems. The data strongly differs from the superconducting/normal-metal case, showing the magnetic nature of the CuMn layer, which acts as a weak ferromagnet. The results are described in the framework of two models for the electrodynamics of superconducting/ferromagnetic (S/M) bilayers characterized by a proximity-coupling length scale which is independent of temperature.

Length scaleSuperconducting coherence lengthSuperconductivityMaterials scienceSpin glassCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesSuperconducting magnetic energy storageSuperconductivity (cond-mat.supr-con)ResonatorFerromagnetismCondensed Matter::SuperconductivityMicrowavePhysical Review B
researchProduct

Neutron scattering study of melting ofHe3surface layers

1982

The melting of the incommensurate phase of $^{3}\mathrm{He}$ submonolayers adsorbed on Grafoil was investigated by elastic neutron scattering. The temperature dependence of the nearest-neighbor distance, the coherence length, and the peak intensity of the structure factor can be explained by a simple model assuming a melting transition which is driven by thermally created lattice defects.

Materials scienceCondensed matter physicsPhase (matter)Neutron diffractionNeutron reflectometryBiological small-angle scatteringNeutron scatteringStructure factorSmall-angle neutron scatteringCoherence lengthPhysical Review B
researchProduct

Low-damping spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si Heusler waveguide

2012

We report on the investigation of spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si (CMFS) Heusler waveguide. The reduced magnetic losses of this compound compared to the commonly used Ni81Fe19 allow for the observation of spin-wave propagation over distances as high as 75 μm via Brillouin light scattering (BLS) microscopy. In the linear regime, a maximum decay length of 16.7 μm of the spin-wave amplitude was found. The coherence length of the observed spin-wave modes was estimated to be at least 16 μm via phase-resolved BLS techniques.

Materials sciencePhysics and Astronomy (miscellaneous)business.industryLight scatteringlaw.inventionCoherence lengthBrillouin zoneAmplitudeOpticsSpin wavelawDecay lengthMicroscopyCondensed Matter::Strongly Correlated ElectronsbusinessWaveguideApplied Physics Letters
researchProduct

Spatial information transmission using axial temporal coherence coding

2007

We present an approach that can be used for transmission of information through space-limited systems or for superresolution. The spatial information is coded with different axial temporal coherence by interfering every spatial region in the input with the same region, but with a certain known delay in the longitudinal axis. Every spatial region has different delay. After mixing all of the spatial information, it is transmitted through the space-limited system. At the detection the information is passed through a similar interference setup containing certain axial delay. By temporally scanning along the longitudinal axis, each time a different spatial region that was coded with the correspo…

Opticsbusiness.industryComputer scienceLight beambusinessDiffraction gratingImage resolutionRefractive indexSpatial analysisAtomic and Molecular Physics and OpticsCoherence lengthCoherence (physics)Coding (social sciences)Optics Letters
researchProduct